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Protein conformational flexibility prediction using machine learning
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Abstract

Using a data set of 16 proteins, a neural network has been trained to predict backbone 15N generalized order parameters from the
three-dimensional structures of proteins. The final network parameterization contains six input features. The average prediction accu-
racy, as measured by the Pearson’s correlation coefficient between experimental and predicted values of the square of the generalized
order parameter is > 0:70. Predicted order parameters for non-terminal amino acid residues depends most strongly on the local packing
density and the probability that the residue is located in regular secondary structure.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Dynamical processes in proteins are believed to be clo-
sely related to protein function, including ligand-binding,
catalysis, and folding, even though this relationship is not
yet understood in great detail [1]. Moreover, information
about protein conformational flexibility is becoming
important in drug design [2]. Thus, considerable impor-
tance exists in the related problems of elucidating the
microscopic factors that determine protein conformational
flexibility and of predicting flexibility from sequence or
structural data.

Theoretical assessments of protein flexibility can derive
from computational simulations with atomistic and mech-
anistic detail [3] or from more abstract approaches [4,5].
Theoretical approaches can be free-standing or aimed at
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interpretation of experimental measurements of protein
flexibility, such as crystallographic B-factors [6,7].

NMR spin relaxation experiments are widely applied for
the study of the dynamics of macromolecules [8,9]. NMR
spin relaxation data has been collected for various proteins
by a number of different research groups, and some of these
data have been compiled into publicly accessible data
banks [10,11]. Most commonly, laboratory frame relaxa-
tion experiments conducted for 15N [12,13] or 2H [14,15]
spins have been used to determine the square of the gener-
alized order parameter, S2, [16] for backbone amide or side
chain methyl groups, respectively [8].

A number of authors have used the availability of such
NMR data as the basis for further studies of conforma-
tional flexibility of proteins (for a recent review, see [17]).
Order parameters derived from NMR have been compared
with other experimental and theoretical measures of pro-
tein flexibility, including crystallographic B-factors [18],
order parameters obtained from fluorescence anisotropy
decay measurements [19,20], and order parameters
obtained from molecular dynamics (MD) simulations
[21,22]. Correlations have been uncovered between order
parameters and molecular features, such as secondary
structural elements and amino acid side chain volumes
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[10,23] and amino acid sequence conservation [24]. Abergel
and Bodenhausen used a model comprising a network of
coupled rotators to predict generalized order parameters
from protein structures [25]. Using a database of backbone
amide order parameters, Zhang and Brüschweiler empiri-
cally devised a simple analytic method for predicting gener-
alized order parameters from static three-dimensional
protein structures [26] and subsequently extended their
approach to generalized order parameters for side-chain
methyl side groups [27] and to a contact-weighted elastic
network model [28]. Schlessinger and Rost used a neural
network to predict B-factors and generalized order param-
eters from protein sequences [7].

Our goal in the present work is to devise a systematic
knowledge-based method for predicting picosecond to
nanosecond protein backbone flexibility as described by
generalized order parameters obtained from NMR mea-
surements. We are interested in ‘‘learning” S2 as a function
of structure from ‘‘examples” without necessarily looking
in detail into the physics of the process. As ‘‘examples”,
we use backbone 15N order parameters deposited into
the Indiana Dynamics Database (IDD) [10] and the
BioMagResBank (BMRB) [11] and the corresponding 3D
structures from the Protein Data Bank (PDB) [29]. We
use a particular type of neural network typically referred
to as a multi-layered feed-forward network (or as a
multi-layer perceptron) with one hidden layer [30] to opti-
mize the prediction of S2 given the set of ‘‘examples”. We
anticipate that similar approaches also can be applied to
predicting slower time scale dynamic properties accessible
to NMR experiments [9].

2. Methods

2.1. Order parameter

The angular distribution of the orientations of the back-
bone N–H bond vector on the picosecond to nanosecond
Table 1
Dataset composition

Index PDB entry Chain ID Residues

1 3CI2 66
2 1CLB 76
3 1CDN 76
4 1STG 149
5 2BBN A 148
6 1XOB 108
7 1XOA 108
8 1GPR 162
9 1BVE A 99

10 1ITM 130
11 1KUN 58
12 2FSP 124
13 1NGL A 179
14 1VRF A 147
15 1D2B A 126
16 1D3Z A 76
time scale is described using the square of the generalized
order parameter from the Lipari–Szabo model-free formal-
ism [16]

S2 ¼ ð4p=5Þ
X2

m¼�2

Y 2;mðXÞh ij j2; ð1Þ

where Y 2;mðXÞ are the second order spherical harmon-
ics, and X describes the orientation of the N–H bond
vector in the protein-attached coordinate system. In
the limiting case of completely isotropic orientation of
the bond vector with respect to the body of the mole-
cule, S2 ¼ 0. Alternatively, S2 ¼ 1, if the orientation is
fixed.
2.2. Data banks

Table 1 lists the PDB, IDD and BMRB entries that were
used in the present work. The data set contains two pairs of
closely related proteins: 1clb and 1cdn are the apo and
ðCd2þÞ1 forms of calbindin D9k, and 1xoa and 1xob are oxi-
dized and reduced forms of thioredoxin. As discussed by
Goodman et al. [10], some of the systematic differences in
S2 between different data sets are due to the differences in
the ways the data were collected and analyzed. Normaliza-
tion of S2 reduces this artificial variation. Goodman et al.
divide each S2 by the average value of S2 for the protein
in which the N–H group resides. We employ a similar lin-
ear transformation. However, under the assumption that
the true average order parameter of residues in the second-
ary structure is likely to vary less among different proteins
than the order parameter averaged over all residues of the
protein, we use the former as the reference point, ‘‘normal-
izing” each database entry so that the average value of S2

for residues in the secondary structure becomes 0.86. This
value is close to the canonical value measured in proteins
for N–H moieties in secondary structure elements when
Database entry S2 values Relatives

IDD 1 58
IDD 2 72 1CDN
IDD 3 71 1CLB
IDD 4 106
IDD 5 114
IDD 7 95 1XOA
IDD 8 96 1XOB
IDD 9 128
IDD 10 78
IDD 13 113
IDD 25 51
IDD 31 109
BMR 4267 147
BMR 4096 138
BMR 5154 102
IDD 11 70
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an effective bond length of 1.02 Å is used in the data
analysis.

2.3. Supervised learning

‘‘Learning from examples” constitutes what is known as
the supervised learning or the function approximation
problem [30], which is informally stated as follows: given
an unknown function f ð~xÞ and a training set fð~xi;~yiÞgN

i¼1,
for which ~yi � f ð~xiÞ, find an approximation of the
unknown function f ð~xÞ. This approximation is typically
obtained from an adequately general parametrization
F ð~x;~wÞ by optimizing parameters ~w. Supervised learning
problems can be solved using artificial neural networks.
We use a special kind of a neural network called a multi-
layered feed-forward network with one hidden layer [30].
This network architecture corresponds to the parametriza-
tion expression:

F ¼ s2 W2s1 W1~xþ~b1

� �
þ~b2

� �
; ð2Þ

where weight matrices W1, W2 and bias vectors ~b1, ~b2 are
the parameters adjusted to fit the training data, and s1ðxÞ,
s2ðxÞ are the transfer functions, which we choose to be an
elementwise application of the sigmoid function:

s1ðxÞ ¼ s2ðxÞ ¼ sigmðxÞ ¼ 1 ðe�x þ 1Þ= : ð3Þ

The function being approximated is the value of S2 for the
ith amino acid residue; therefore, f ð~xÞ is a scalar. The uni-
versal approximation theorem [30] implies that this param-
etrization can approximate any continuous function with
values within [0, 1] to any given accuracy, if sufficiently
large dimensionalities of W1, W2, b1 and b2 are allowed.

2.4. Features

Instead of using the 3D structure of the protein in some
machine-readable form as inputs in the training set, we
extracted features of the 3D structure that appear to be sta-
tistically related to conformational flexibility and use those
features as inputs. Statistical correlations between features
and S2 were measured using the Pearson’s correlation coef-
ficient, defined by

Cxy ¼
xy � �x�y
rxry

ð4Þ

for two variables x (=experimental S2) and y (=feature or
predicted S2) in which the bars indicate averaging and
rx and ry are the standard deviations in the two variables.
These statistics were calculated over the number of general-
ized order parameters available for each protein. Correla-
tions were considered between S2 for the N–H bond
vector of the ith residue and features for the ith residue
and flanking residues in the amino acid sequence.
‘‘Position” denotes the position of the residue in the pro-
tein chain for which the feature is calculated relative to
the position of the residue for which S2 is measured. Thus,
a correlation coefficient reported for feature p and position
k indicates that the correlation coefficient was calculated
using Eq. (4) with x ¼ S2

i and y ¼ piþk for i ¼ 1;N and N

is the number of amino acid residues for which data are
available. Ranges of k from �6 to +6 were examined. Cor-
relations between features and S2 were calculated both by
pooling all data for all proteins and by averaging the cor-
relations obtained for individual proteins. The features
examined, which were chosen based on intuition and the
work of others [6,26], are described below.

The DSSP (dictionary of secondary structure of pro-
teins) program [31] classifies the secondary structure state
of each residue in the protein as helix (310, G; a, H; p, I),
extended sheet (E), b bridge (B), turn (T), bend (S), or
‘‘other” (L). The continuum secondary structure assign-
ment DSSPcont [23] extends this method by capturing
‘‘uncertainties” of DSSP assignments and assigning an
eight-dimensional vector to each residue. The vector can
be thought of as the probabilities of the respective DSSP
assignments. The sum of all eight elements, therefore,
equals 1. Each of the eight DSSPcont probabilities was
treated as a feature. In addition, the feature ‘‘secondary”
was defined as the sum of all DSSPcont values except ‘L’
and ‘S’.

The feature ‘‘BB H-bonds energy” is the energy of the
backbone-to-backbone H-bonds that involve a given pep-
tide bond, where the energy is calculated in the same man-
ner as by DSSP.

‘‘Dcom” is the distance between the Ca atom and the cen-
ter of mass of the non-hydrogen atoms of the protein.

‘‘Residue size” is the number of all non-hydrogen atoms
in the residue.

‘‘Tail M” equals 1 if the peptide bond, to which the N–H
bond belongs, is M or fewer residues away from N- or C-
terminus, and 0 otherwise. For example, in a protein chain
with residues numbered from 1 to 100, for residues 3 and
99, ‘‘Tail M ¼ 1” will be 0, while ‘‘Tail M ¼ 2” will be 1.

‘‘Loop left” and ‘‘Loop right” show the extent of the
non-secondary (loop) structure towards the N- and C-ter-
minus, respectively. For a given residue, ‘‘Loop right” is
one-tenth times the relative position towards the C-termi-
nus of the first residue with a ‘‘secondary” feature (defined
above) greater than 0.95 (or 95%). If the residue currently
of interest is in regular secondary structure, ‘‘Loop right” is
0.0. If such residue is not found (due to a chain break) or is
found more than 10 residues away, ‘‘Loop right” is 1.0.
The definition of ‘‘Loop left” is analogous.

‘‘Bend(�m, 0,m)” is the cosine of the angle formed by
vectors Caðiþ k � mÞCaðiþ kÞ and Caðiþ k þ mÞCaðiþ kÞ,
where CaðnÞ, is the Ca atoms of the nth residue.

Distance-dependent features, ‘‘gðrX
k Þ”, are given byP

jf ðrX iþk ;jÞ, where rX iþk ;j is the distance between the jth
atom and the atom X in the ðiþ kÞth residue. The summa-
tion extends over all heavy atoms, including hetero-atoms,
but not water molecules. When X ¼ H, the reference atom
is the amide hydrogen of the ðiþ kÞth residue and heavy
atoms in the ðiþ kÞth and ðiþ k � 1Þth residues are not



Table 2
Dataset-wide correlations 100Cxy between features and S2

Feature description Position, k

�6 �5 �4 �3 �2 �1 0 +1 +2 +3 +4 +5 +6

exp �rO
k

�
1 Å

� �
4.9 12.8 21.8 28.0 33.7 37.1 32.1 23.9 13.7 4.7 �1.7 �8.5 �9.6

exp �rO
k

�
2 Å

� �
8.4 16.9 27.2 34.2 40.8 44.4 39.1 28.1 17.0 6.8 �1.4 �8.4 �9.3

exp �rO
k

�
3 Å

� �
9.9 18.5 28.6 35.6 42.0 45.5 40.6 29.6 18.5 8.2 �0.5 �7.4 �8.4

exp �rO
k

�
4 Å

� �
10.6 19.0 28.8 35.7 41.7 45.1 40.6 30.1 19.2 9.2 0.5 �6.3 �7.5

exp �rO
k

�
5 Å

� �
11.0 19.2 28.5 35.2 41.1 44.3 40.1 30.1 19.6 9.9 1.3 �5.4 �6.7

exp �rO
k

�
7 Å

� �
11.4 18.9 27.4 33.5 38.9 41.9 38.3 29.1 19.4 10.4 2.3 �3.9 �5.5

exp �rO
k

�
10 Å

� �
11.3 17.7 24.8 30.1 34.7 37.3 34.2 26.3 17.8 9.8 2.7 �2.7 �4.4

1 exp �rO
k

�
1 Å

� ��
4.9 12.8 21.8 28.0 33.7 37.1 32.1 23.9 13.7 4.7 �1.7 �8.5 �9.6

1 exp �rO
k

�
2 Å

� ��
�8.1 �16.6 �25.9 �36.5 �47.7 �54.7 �47.7 �33.6 �21.2 �10.6 �0.1 6.7 8.1

1 exp �rO
k

�
3 Å

� ��
�12.1 �20.9 �31.1 �41.9 �52.4 �58.1 �52.3 �38.8 �25.5 �13.1 �1.8 5.5 7.9

1 exp �rO
k

�
4 Å

� ��
�14.2 �23.1 �33.6 �44.0 �53.7 �58.7 �53.9 �41.0 �27.3 �14.1 �2.9 4.8 7.5

1 exp �rO
k

�
5 Å

� ��
�15.2 �24.2 �34.5 �44.6 �53.4 �58.0 �53.8 �41.2 �27.6 �14.3 �3.2 4.4 7.3

1 exp �rO
k

�
7 Å

� ��
�15.5 �24.3 �34.1 �43.3 �51.0 �54.8 �50.7 �38.6 �25.6 �13.0 �2.8 4.3 6.9

1 exp �rO
k

�
10 Å

� ��
�13.9 �21.5 �30.0 �37.6 �43.8 �46.7 �42.7 �31.6 �20.4 �9.9 �1.6 4.2 6.2

exp �rH
k

�
1 Å

� �
�4.6 �1.2 3.2 9.8 16.3 26.0 33.6 33.3 31.1 22.3 16.5 10.3 8.2

exp �rH
k

�
2 Å

� �
�1.5 3.9 11.3 20.1 28.4 39.8 46.5 43.0 36.9 27.0 17.9 8.8 5.0

exp �rH
k

�
3 Å

� �
0.4 6.5 14.3 23.3 31.6 41.9 47.4 43.1 35.7 26.6 17.0 7.8 3.5

exp �rH
k

�
4 Å

� �
1.5 7.7 15.3 24.1 32.1 41.6 46.4 42.0 34.5 25.9 16.6 7.6 3.2

exp �rH
k

�
5 Å

� �
2.3 8.4 15.7 24.2 31.9 40.7 45.1 40.8 33.4 25.2 16.2 7.7 3.3

exp �rH
k

�
7 Å

� �
3.6 9.2 15.8 23.4 30.5 38.3 42.0 38.0 31.1 23.7 15.4 7.7 3.4

exp �rH
k

�
10 Å

� �
4.8 9.5 15.1 21.4 27.3 33.9 36.8 33.2 27.1 20.7 13.6 7.1 3.2

1 exp �rH
k

�
1 Å

� ��
2.1 �2.0 �7.4 �15.5 �22.7 �33.6 �38.5 �40.2 �34.1 �25.6 �16.3 �11.2 �8.5

1 exp �rH
k

�
2 Å

� ��
0.1 �6.2 �14.1 �24.5 �34.9 �48.2 �53.8 �51.6 �43.8 �32.1 �20.8 �11.5 �6.7

1 exp �rH
k

�
3 Å

� ��
�1.7 �9.0 �17.9 �29.1 �39.9 �53.1 �58.7 �55.3 �46.6 �34.2 �22.2 �11.3 �5.4

1 exp �rH
k

�
4 Å

� ��
�2.8 �10.7 �19.8 �30.9 �41.5 �54.0 �59.4 �55.9 �46.9 �34.5 �22.3 �11.1 �4.9

1 exp �rH
k

�
5 Å

� ��
�3.5 �11.6 �20.7 �31.5 �41.7 �53.6 �58.7 �55.1 �45.9 �33.7 �21.6 �10.6 �4.4

1 exp �rH
k

�
7 Å

� ��
�4.2 �12.0 �20.7 �30.8 �40.0 �50.7 �55.1 �50.9 �41.4 �29.9 �18.8 �9.0 �3.4

1 exp �rH
k

�
10 Å

� ��
�4.6 �10.8 �18.1 �26.3 �33.9 �42.7 �46.2 �41.3 �32.5 �22.7 �13.8 �6.3 �1.9

sigm 3 Å� rH
k

� �
�3.5 0.2 6.0 13.1 20.5 31.6 39.0 37.7 34.2 24.7 17.4 10.3 7.4

sigm 4 Å� rH
k

� �
�2.9 1.3 7.9 15.5 23.3 34.8 41.8 39.7 35.1 25.6 17.5 9.6 6.3

sigm 5 Å� rH
k

� �
�2.0 2.8 10.1 18.2 26.2 37.9 44.2 41.0 35.4 25.9 17.2 8.4 4.9

sigm 7 Å� rH
k

� �
�0.2 5.8 13.4 22.2 30.2 41.0 46.4 41.5 34.1 25.2 15.7 6.2 2.2

sigm 10 Å� rH
k

� �
1.7 7.6 15.3 24.1 31.6 40.7 45.2 39.7 31.9 23.7 14.5 5.5 1.1

1 sigm 3 Å� rH
k

� ��
1.7 �2.9 �8.9 �17.5 �25.8 �37.5 �42.9 �43.4 �37.1 �27.8 �17.7 �11.4 �8.1

1 sigm 4 Å� rH
k

� ��
1.4 �3.7 �10.2 �19.3 �28.4 �40.7 �46.5 �45.8 �39.1 �29.2 �18.6 �11.3 �7.5

1 sigm 5 Å� rH
k

� ��
0.9 �4.8 �12.0 �21.7 �31.5 �44.6 �50.7 �48.5 �41.1 �30.5 �19.5 �10.9 �6.6

1 sigm 7 Å� rH
k

� ��
�0.5 �7.4 �15.6 �26.3 �36.8 �50.7 �56.9 �52.3 �43.4 �31.9 �20.5 �9.8 �4.3

1 sigm 10 Å� rH
k

� ��
�2.6 �10.1 �18.8 �29.9 �40.1 �53.2 �59.2 �54.3 �45.0 �33.1 �21.4 �9.6 �3.0

hard 3 Å� rH
k

� �
�1.7 �1.7 �2.2 2.9 4.7 11.5 16.4 18.7 18.6 13.1 9.9 8.5 9.6

hard 4 Å� rH
k

� �
�5.0 �2.1 1.6 7.0 12.4 21.0 27.9 28.4 27.8 20.1 15.0 9.9 8.0

hard 5 Å� rH
k

� �
�2.6 �0.7 5.3 9.8 16.1 24.8 31.2 31.6 28.4 20.3 14.5 9.3 7.4

hard 7 Å� rH
k

� �
�2.0 4.1 11.9 20.3 28.4 39.8 44.5 40.0 33.0 23.8 14.7 5.7 2.3

hard 10 Å� rH
k

� �
1.7 7.6 14.7 23.1 30.6 39.4 44.3 38.5 31.1 23.3 14.1 5.2 1.0

exp �rN
k

�
3 Å

� �
(BB) 2.1 7.6 16.2 25.9 34.9 43.6 48.4 43.4 35.5 25.6 15.7 6.2 0.7

1 hard 7 Å� rC
k

� ��
(all) �2.1 �8.9 �18.4 �29.5 �40.5 �52.4 �52.8 �41.3 �29.6 �17.7 �7.3 0.7 4.3

Dcom �3.4 �10.3 �19.3 �27.9 �33.7 �38.7 �38.8 �32.6 �25.3 �17.4 �8.8 �1.6 2.1

Tail, M ¼ 1 �7.4 �8.7 �10.6 �14.1 �20.5 �21.7 �36.5 �16.3 �9.1 �2.8 2.3 2.8 3.9
Tail, M ¼ 2 �7.4 �9.6 �11.9 �15.1 �21.2 �40.1 �42.3 �22.0 �8.3 �0.5 3.6 4.8 5.5
Tail, M ¼ 3 �6.5 �9.5 �12.4 �15.8 �36.6 �41.9 �41.8 �26.7 �10.9 1.3 5.2 6.2 8.0
Tail, M ¼ 4 �4.7 �8.5 �12.2 �31.2 �38.5 �41.1 �39.3 �26.4 �15.9 �2.2 6.5 8.4 9.2
Tail, M ¼ 5 �2.9 �6.7 �26.3 �33.5 �38.1 �38.7 �36.5 �25.1 �17.0 �8.2 3.5 9.5 10.5
Tail, M ¼ 6 �1.9 �20.0 �27.5 �32.7 �35.8 �35.9 �33.7 �23.6 �17.0 �9.6 �2.7 6.1 10.7

DSSPcont G �7.2 �9.3 �13.4 �10.2 �4.9 �1.9 �0.1 �2.2 �4.7 �2.6 0.3 3.1 1.2
DSSPcont H �5.4 0.1 5.7 12.1 16.2 19.1 22.7 21.2 16.9 11.8 6.5 2.6 �1.1
DSSPcont I �6.4 �14.3 �14.2 �3.4 �0.5 1.0 1.2 0.9 �0.5 �1.7 2.2 3.0 1.4
DSSPcont T 3.3 1.1 �1.5 �6.0 �3.8 0.5 1.4 0.1 2.1 2.3 3.7 7.7 8.9
DSSPcont E 2.7 5.5 7.7 10.7 14.2 16.7 14.9 9.6 5.6 0.6 �2.4 �0.8 �1.4
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Table 2 (continued)

Feature description Position, k

�6 �5 �4 �3 �2 �1 0 +1 +2 +3 +4 +5 +6

DSSPcont B 4.2 2.8 2.4 1.8 �0.1 0.9 3.4 �2.9 �0.1 �4.1 �5.7 �4.1 �7.5
DSSPcont S 8.0 2.8 0.8 �8.5 �14.8 �15.6 �20.1 �14.6 �8.4 �4.4 0.9 0.9 2.6
DSSPcont L �2.1 �4.3 �8.8 �12.7 �21.4 �33.2 �33.8 �26.9 �22.4 �12.4 �8.6 �10.0 �4.9
Secondary �3.2 1.8 7.0 16.1 27.3 37.7 41.5 32.0 24.3 13.3 6.6 7.8 2.4

Bend (�1,0,1) 1.6 0.9 �0.9 �4.2 �8.6 �15.7 �16.7 �14.6 �13.2 �11.1 -9.8 �9.0 �5.1
Bend (�2,0,2) 3.3 2.8 1.3 �1.5 �5.1 �8.3 �10.1 �12.2 �12.0 �11.4 �10.8 �10.2 �6.4
Loop left �3.8 �5.8 �9.5 �14.5 �22.6 �28.6 �32.0 �37.6 �35.5 �33.9 �30.3 �30.1 �27.5
Loop right �14.4 �19.0 �25.7 �36.0 �40.4 �37.6 �37.6 �17.4 �5.3 1.1 3.9 3.8 4.3
Residue size �6.4 �1.5 �0.2 4.1 6.4 9.0 10.0 7.2 6.4 2.3 �1.2 �4.1 �6.0
BB H-bonds energy 5.1 �2.5 �7.8 �15.3 �22.3 �27.1 �34.1 �31.3 �26.6 �16.0 �10.0 �2.8 0.8
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included in the summation. When X ¼ O, the reference
atom is the carbonyl oxygen of the ðiþ kÞth residue and
heavy atoms in the ðiþ kÞth and ðiþ k þ 1Þth residues
are not included in the summation. When X ¼ C, the refer-
ence atom is the Ca atom of the residue. The modifier
‘‘(BB)” indicates that the summation involves only the
atoms that are part of the backbone (N, Ca, C0). The mod-
ifier ‘‘(all)” indicates that the summation extends over all
residues. The function hardðxÞ is defined by,

hardðxÞ ¼
1; if x P 0

0; if x < 0

�
ð5Þ

The notation ‘‘1/. . .” indicates the inverse.
Some of these features are similar to quantities used by

other authors. For example, ‘‘exp �rH
0

�
1 Å

� �
” and

‘‘exp �rO
�1

�
1 Å

� �
” are the components of formula used

by Zhang–Brüschweiler to predict S2 [26]. In addition,
‘‘1 hard 7 Å� rC

0

� ��
(all)” corresponds to the function used

by Halle to interpret crystallographic B-factors [6].
2.5. Optimization

To find the optimal, in the least-squared sense, values of
the parameters W1, W2,~b1, and~b2, the Levenberg–Marqu-
ardt algorithm was used [32,33]. The learning process was
cross-validated by iteratively selecting one of the proteins
from the data set, also excluding its relatives from the data
set, allowing the network to learn S2 from the remaining set
and calculating the Pearson correlation between experi-
mental and predicted values of S2. This step was repeated
for all proteins in the dataset. The average correlation
was used as a measure of the quality of the prediction
process.
2.6. Independent data

Experimental generalized order parameters have been
reported for B3 domain of staphyloccocal protein G
(GB3) [34], the villin headpiece domain (HP67) [35], the
holo frenolicin acyl carrier protein (fren ACP) [36], and
Escherichia coli ribonuclease H (RNaseH) [37–40]. Gener-
alized order parameters were predicted using the structural
coordinates from PDB files 1IGD, 1QQV, 1OR5, and
2RN2, respectively. Experimental generalized order
parameters have been reported for wild-type and loop-
swap mutants of the 10th fibronectin type III domain of
the protein fibronectin (fnfn10) and of the third fibronectin
type III domain of the protein tenascin (tnfn3) [41]. The
mutants were constructed by interchange of the CC0 and
FG loops between fnfn10 and tnfn3. Generalized order
parameters were predicted using structural models
described elsewhere [41]. GB3, HP67, fren ACP, RNaseH,
fnfn10, and tnfn3 are not similar to any of the proteins
used to develop the prediction method.

3. Results

3.1. Statistical analysis and validation

Correlations between some of the features we examined
and the normalized squared order parameters for all pro-
teins in the sample set are summarized in Table 2. The aver-
age correlations determined by analyzing each protein
independently are shown in Table 3.

Because of the finite size of the training set, supervised
learning can be subject to the problem of overfitting/over-
training. Therefore, the number of adjustable parameters
and, consequently, the number of features used by the net-
work, must be limited. After some experimentation, we
decided to use just six features and no hidden layer, i.e. a sim-
ple perceptron that can only capture linear correlations (due
to technical issues, this perceptron was realized by using a
single hidden unit in a two-layer feed-forward network).
The cells of Tables 2 and 3 corresponding to the features
presently incorporated into the model are marked in bold
font and underlined. Features utilized in the final model
may not necessarily correspond to features with the highest
correlation in Tables 2 and 3. The network was trained using
least squares minimization of the difference between the
experimental and predicted values of S2; the reported corre-
lation coefficients are descriptive statistics. The various fea-
tures are mutually cross-correlated to different extents and
such correlations are not exhibited in the tables.

The optimized values of the model parameters are
shown in Table 4. The results of cross-validating the opti-



Table 3
Average correlations 100Cxy between features and S2

Feature description Position, k

�6 �5 �4 �3 �2 �1 0 +1 +2 +3 +4 +5 +6

exp �rO
k

�
1 Å

� �
5.0 13.6 23.0 29.1 34.4 38.8 32.8 21.5 12.2 1.8 �3.7 �11.8 �11.7

exp �rO
k

�
2 Å

� �
8.1 16.9 27.2 33.7 40.5 44.8 38.8 24.1 13.6 1.7 �6.5 �14.6 �14.0

exp �rO
k

�
3 Å

� �
9.2 18.0 28.1 34.7 41.6 45.8 40.2 24.9 14.2 2.2 �7.3 �15.2 �14.6

exp �rO
k

�
4 Å

� �
9.5 18.3 28.2 34.9 41.8 45.9 40.7 25.4 14.6 2.7 �7.4 �15.1 �14.7

exp �rO
k

�
5 Å

� �
9.5 18.3 28.1 34.9 41.8 45.9 40.9 25.7 14.9 3.1 �7.2 �14.9 �14.6

exp �rO
k

�
7 Å

� �
9.4 18.2 28.0 34.9 41.7 45.8 41.1 26.1 15.4 3.7 �7.0 �14.4 �14.4

exp �rO
k

�
10 Å

� �
9.3 18.0 27.8 34.8 41.7 45.8 41.3 26.5 15.8 4.2 �6.7 �13.9 �14.2

1 exp �rO
k

�
1 Å

� ��
5.0 13.6 23.0 29.1 34.4 38.8 32.8 21.5 12.2 1.8 �3.7 �11.8 �11.7

1 exp �rO
k

�
2 Å

� ��
�6.4 �14.0 �23.0 �33.1 �42.3 �51.8 �45.2 �26.1 �16.9 �5.0 4.8 12.2 11.2

1 exp �rO
k

�
3 Å

� ��
�8.4 �16.1 �25.9 �36.1 �45.1 �53.9 �48.1 �29.1 �19.2 �6.0 5.0 12.4 12.4

1 exp �rO
k

�
4 Å

� ��
�9.2 �17.0 �27.2 �37.2 �45.9 �53.9 �48.7 �30.3 �20.2 �6.7 5.0 12.4 12.9

1 exp �rO
k

�
5 Å

� ��
�9.5 �17.4 �27.8 �37.6 �46.1 �53.5 �48.6 �30.7 �20.5 �7.0 5.0 12.4 13.2

1 exp �rO
k

�
7 Å

� ��
�9.7 �17.7 �28.3 �37.7 �45.7 �52.4 �47.8 �30.7 �20.5 �7.1 5.0 12.3 13.3

1 exp �rO
k

�
10 Å

� ��
�9.6 �17.8 �28.4 �37.4 �45.1 �51.1 �46.6 �30.2 �19.9 �7.0 5.1 12.3 13.4

exp �rH
k

�
1 Å

� �
�4.3 �1.2 2.7 8.1 15.7 26.6 36.0 35.0 33.9 23.0 18.3 9.1 8.7

exp �rH
k

�
2 Å

� �
�3.0 2.5 9.9 17.8 26.2 39.2 48.3 43.0 36.9 24.5 15.4 4.0 1.1

exp �rH
k

�
3 Å

� �
�2.0 4.2 12.4 21.0 29.4 41.5 49.4 42.8 35.1 23.0 12.9 1.6 �2.2

exp �rH
k

�
4 Å

� �
�1.6 4.7 13.2 21.9 30.2 41.7 49.0 42.1 33.9 22.3 11.8 0.9 �3.4

exp �rH
k

�
5 Å

� �
�1.4 4.9 13.4 22.2 30.5 41.6 48.6 41.6 33.3 21.9 11.3 0.7 �3.8

exp �rH
k

�
7 Å

� �
�1.4 4.9 13.5 22.4 30.6 41.4 48.1 41.2 32.8 21.6 10.9 0.7 �4.1

exp �rH
k

�
10 Å

� �
�1.4 4.9 13.4 22.4 30.6 41.3 47.7 40.9 32.5 21.5 10.7 0.8 �4.2

1 exp �rH
k

�
1 Å

� ��
2.9 0.2 �4.2 �9.8 �17.8 �31.4 �39.3 �39.0 �37.1 �23.8 �16.9 �8.2 �5.9

1 exp �rH
k

�
2 Å

� ��
2.5 �2.5 �9.3 �17.6 �27.4 �43.0 �52.5 �47.9 �42.8 �27.2 �16.2 �5.4 �1.2

1 exp �rH
k

�
3 Å

� ��
1.8 �3.9 �11.7 �21.6 �31.3 �46.5 �55.7 �49.5 �42.5 �27.0 �15.0 �3.7 1.5

1 exp �rH
k

�
4 Å

� ��
1.5 �4.5 �12.7 �23.0 �32.6 �47.1 �55.8 �49.1 �41.4 �26.7 �14.3 �3.1 2.6

1 exp �rH
k

�
5 Å

� ��
1.3 �4.8 �13.1 �23.6 �33.1 �47.0 �55.2 �48.3 �40.4 �26.4 �13.9 �2.8 3.1

1 exp �rH
k

�
7 Å

� ��
1.2 �5.0 �13.5 �24.0 �33.2 �46.2 �53.8 �46.9 �38.9 �25.8 �13.4 �2.6 3.4

1 exp �rH
k

�
10 Å

� ��
1.3 �5.0 �13.6 �23.9 �32.9 �45.2 �52.3 �45.5 �37.3 �24.9 �12.7 �2.3 3.6

sigm 3 Å� rH
k

� �
�4.2 �0.5 5.1 11.1 19.2 31.9 41.5 38.9 36.2 24.5 18.2 7.9 6.4

sigm 4 Å� rH
k

� �
�4.1 0.3 6.9 13.4 21.6 34.8 44.2 40.4 36.4 24.5 17.2 6.2 4.2

sigm 5 Å� rH
k

� �
�3.6 1.7 9.0 16.1 24.3 37.6 46.4 41.2 35.8 23.8 15.4 4.1 1.5

sigm 7 Å� rH
� �

�2.2 4.4 12.3 20.5 28.2 40.5 48.1 41.2 33.3 21.8 11.9 0.6 �2.8
sigm 10 Å� rH

k

� �
�0.1 5.6 13.8 22.4 29.7 40.2 46.9 39.3 30.8 20.0 9.6 �1.0 �5.3

1 sigm 3 Å� rH
k

� ��
3.0 �0.4 �5.5 �11.8 �20.6 �35.1 �44.0 �42.0 �39.5 �25.6 �17.1 �7.5 �4.7

1 sigm 4 Å� rH
k

� ��
3.1 �1.0 �6.8 �13.7 �22.8 �37.9 �47.2 �43.8 �40.6 �26.3 �16.9 �6.6 �3.4

1 sigm 5 Å� rH
k

� ��
3.1 �1.8 �8.4 �16.2 �25.6 �41.2 �50.7 �45.8 �41.2 �26.4 �16.1 �5.3 �1.7

1 sigm 7 Å� rH
k

� ��
2.3 �3.8 �11.3 �21.0 �30.1 �45.7 �55.3 �48.1 �40.8 �25.6 �13.9 �2.8 1.9

1 sigm 10 Å� rH
k

� ��
0.5 �5.2 �13.2 �23.9 �32.4 �46.5 �55.6 �47.9 �39.4 �24.9 �12.7 �1.6 4.3

hard 3 Å� rH
k

� �
�0.2 �0.8 �3.3 0.7 4.4 12.6 17.6 20.8 21.5 14.1 12.3 9.3 12.9

hard 4 Å� rH
k

� �
�5.2 �2.8 0.6 5.6 13.2 22.6 31.5 31.5 32.3 22.7 19.1 10.5 9.8

hard 5 Å� rH
k

� �
�3.7 �1.5 4.6 7.8 15.3 25.5 33.7 32.7 31.4 21.3 16.4 7.3 6.7

hard 7 Å� rH
k

� �
�4.6 3.0 11.2 19.1 26.8 39.3 46.3 39.9 32.7 20.7 11.6 0.8 �2.0

hard 10 Å� rH
k

� �
0.1 5.8 13.3 21.4 28.5 38.8 45.8 38.2 30.1 19.8 9.5 �1.2 �5.0

exp �rN
k =3 Å

� �
(BB) �1.9 4.8 13.8 23.5 33.3 44.7 50.6 43.4 34.1 22.1 11.3 0.5 �5.2

1 hard 7 Å� rC
k

� ��
(all) �0.1 �7.6 �16.5 �26.8 �38.1 �53.5 �51.1 �36.7 �25.6 �12.8 �1.5 7.4 10.0

Dcom �3.3 �10.3 �19.3 �28.1 �34.6 �42.2 �42.7 �32.2 �22.8 �12.8 �1.4 7.0 10.1

Tail, M ¼ 1 �5.7 �6.0 �7.6 �10.6 �17.4 �23.4 �40.8 �12.3 �10.8 �5.3 3.1 1.7 4.6
Tail, M ¼ 2 �5.3 �6.5 �8.5 �10.8 �17.3 �41.0 �45.1 �26.1 �9.9 �3.3 2.7 4.3 6.4
Tail, M ¼ 3 �4.8 �6.0 �8.3 �11.1 �33.0 �41.3 �42.1 �29.7 �15.4 �1.2 5.1 6.1 9.6
Tail, M ¼ 4 �3.0 �5.6 �7.7 �27.2 �34.1 �39.7 �38.5 �27.4 �19.4 �6.0 6.7 8.9 11.2
Tail, M ¼ 5 �1.2 �3.9 �22.7 �28.6 �33.9 �36.5 �34.8 �25.1 �18.5 �10.4 2.2 10.6 12.6
Tail, M ¼ 6 �0.9 �17.3 �23.4 �28.4 �31.3 �33.3 �31.7 �22.5 �17.1 �9.7 �2.6 5.3 12.8

DSSPcont G �5.1 �9.0 �15.2 �11.6 �5.4 �2.8 �0.7 �2.1 �2.7 �0.4 0.8 6.5 4.6
DSSPcont H �6.4 �0.4 5.9 13.1 17.9 22.0 26.3 25.3 21.4 16.5 10.7 6.5 2.4
DSSPcont I �3.4 �6.0 �5.7 �2.5 �0.4 �2.4 0.0 0.3 0.9 0.8 2.0 3.5 2.9
DSSPcont T 2.1 �1.4 �3.1 �9.7 �7.5 �1.5 �1.1 �3.7 �0.3 2.3 4.5 9.3 10.2
DSSPcont E 2.7 5.9 7.3 10.1 12.8 14.9 11.6 4.9 �0.1 �6.9 �12.4 �9.4 �9.3
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Table 3 (continued)

Feature description Position, k

�6 �5 �4 �3 �2 �1 0 +1 +2 +3 +4 +5 +6

DSSPcont B 5.5 3.9 3.1 1.4 �0.3 �0.0 3.3 0.4 0.6 �2.8 �1.5 1.9 �5.5
DSSPcont S 8.7 3.3 1.0 �7.5 �14.3 �15.1 �19.5 �14.3 �9.0 �3.4 1.1 0.2 4.2
DSSPcont L �0.3 �1.3 �6.5 �11.4 �21.5 �36.4 �37.0 �27.4 �19.9 �10.7 �1.5 �4.0 1.1
Secondary �5.4 �0.8 5.0 14.5 26.5 39.2 42.9 31.4 22.0 10.5 0.7 3.5 �3.0

Bend (�1, 0, 1) 2.4 1.6 �0.6 �4.5 �10.0 �21.4 �23.2 �20.3 �18.0 �16.2 �13.0 �11.0 �7.0
Bend (�2, 0, 2) 2.6 2.1 0.5 �2.6 �7.0 �11.8 �15.5 �18.6 �17.7 �17.1 �14.7 �12.7 �9.0
Loop left �0.9 �1.5 �4.5 �8.0 �14.8 �22.4 �24.6 �24.8 �16.0 �12.1 �9.0 �7.2 �6.7
Loop right �8.6 �8.3 �15.4 �20.9 �24.3 �26.4 �34.8 �14.4 �5.7 �0.8 4.7 3.7 5.2
Residue size �5.2 �0.6 0.4 4.7 7.6 10.4 9.4 8.5 8.1 1.8 1.1 �6.2 �8.0
BB H-bonds energy 7.4 �1.4 �7.3 �15.3 �23.1 �28.5 �35.5 �32.8 �26.7 �14.6 �6.7 0.9 3.8

Table 4
Optimized weights and bias parameters

Feature Parameter Value

exp �rO
�1=3 Å

� �
W1ð1Þ �2.56

exp �rH
0 =2 Å

� �
W1ð2Þ �1.94

Secondary, k ¼ 0 W1ð3Þ �0.821
DSSPcont L, k ¼ 0 W1ð4Þ �0.270
Bend(�1,0,1), k ¼ 0 W1ð5Þ 0.292
Tail, M ¼ 4, k ¼ 0 W1ð6Þ 0.730

~b1 0.652
W2 �4.64
~b2 2.01
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Fig. 1. Correlations between predicted and experimental S2. (- - -) Zhang–
Brüschweiler formula (6); (—) neural network predictions during cross-
validation. Abscissa shows the protein index from Table 1. As noted in
Table 1, proteins 2 and 3 and proteins 6 and 7 are closely related.

Fig. 3. The backbones of the first five NMR models of the forkhead
domain of the adipocyte-transcription factor freac-11 (S12) (PDB code:
1D5V).
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Fig. 2. S2 predictions for the first five NMR models of the forkhead
domain of the adipocyte-transcription factor freac-11 (S12) (PDB code:
1D5V).
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mized parameters for these features are shown in Fig. 1.
Although the predictions themselves are affected by the ini-
tial normalization of the S2, the average correlation used as
the measure of the prediction quality is the same, whether
we compare the predictions to the normalized S2 or the ori-
ginal unnormalized data. The average correlation between
experimental and predicted values of S2 during the cross-
validation procedure equals 0:71 with a sample deviation
of 0.15.
3.2. Sensitivity to structure

To illustrate the sensitivity of the predictions to details
of the protein structure, Fig. 2 shows the S2 predictions
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Fig. 4. S2 for (a) GB3 (56 residues, 50 S2 values), (b) HP67 (67 residues, 54 S2 values), (c) fren ACP (83 residues, 64 S2 values) and (d) RNase H (155
residues, 120 S2 values). (—) Experimental measurements and (- - -) neural network predictions are plotted as a function of residue number. (Insets)
Predictions are plotted versus experimental values; the x- and y-coordinates ranges from 0 to 1. Predicted values were calculated using structural
coordinates from PDB files (a) 1IGD, (b) 1QQV, (c) 1OR5, and (d) 2RN2.
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for the first five NMR models of the forkhead domain of
the adipocyte-transcription factor freac-11 (also known as
S12) [42]. A superposition of the structures is shown in
Fig. 3).

3.3. Prediction for additional proteins

Backbone dynamics of GB3, HP67, fren ACP, and
RNaseH have been reported in the literature. None of
these proteins, nor any homologs, were included in the
training set and consequently this set of proteins provides
an independent assessment of the performance of the neu-
ral network. The experimental and predicted values of S2

are shown in Fig. 4. The correlation coefficients between
the experimental and predicted data are 0.491, 0.925,
0.867, and 0.837 for GB3, HP67, fren ACP, and RNaseH,
respectively. The root mean-square deviations between
experimental and predicted values of S2 are 0.061, 0.052,
0.104, and 0.053, respectively. The lower correlation for
GB3 reflects the absence of residues with markedly low val-
ues of S2; however, the root mean-square deviation is sim-
ilar to those for the other proteins. The average correlation
coefficient for these four proteins is 0:78� 0:20 and is sim-
ilar to the estimate from the cross-validation experiment
(0:71� 0:15).
3.4. Prediction for fibronectin type III domains

Backbone 15N S2 have been reported for wild-type and
two loop swap mutants of fnfn10 and of tnfn3 [41]. The
experimental and predicted S2 for the wild-type and mutant
proteins are shown in Figs. 5 and 6. The wild-type fnfn10
domain has highly flexible CC0 (residues 39–45) and
RGD (residues 76–83), shown in Fig. 5a, whereas the
wild-type tnfn3 domain has relatively rigid CC0 and
RGD loops, shown in Fig. 6a. The first fnfn10 mutant,
shown in Fig. 5b, substitutes the more rigid CC0 loop from
tnfn3 for the corresponding loop in fnfn10. The second
mutant, shown in Fig. 5c, substitutes the shorter more rigid
RGD loop from tnfn3 for the corresponding loop in
fnfn10. The predicted values for the two mutant fnfn10
domains show that the flexibilities of the mutant loops
are reduced relative to the native loop sequences. The first
tnfn3 mutant, shown in Fig. 6b, substitutes the more flexi-
ble CC0 loop from fnfn10 for the corresponding loop in
tnfn3. The second mutant, shown in Fig. 6c, substitutes
the longer more flexible RGD loop from fnfn10 for the cor-
responding loop in tnfn3. The predicted values for the two
mutant proteins show that the flexibility of the mutant
loops is increased relative to the native loop sequences.
These results are in qualitative agreement with the experi-
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Fig. 5. S2 of fnfn10 domain (a) and its mutants (b and c); (—) experimental measurements; (- - -) neural network predictions. The y-coordinate of each
figure ranges from 0 to 1. Residue numbering is based on the wild-type sequence. The location of the CC0 and RGD loops is highlighted in gray. The
mutations introduced are shown for each variant protein. Structures of the fnfn10 domains used for predictions are described elsewhere [41]. The
correlation coefficients between experimental and predicted S2 values are (a) 0.620, (b) 0.625, and (c) 0.720.
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mental data, although the predictions tend to overestimate
the value of S2 for the mutant loops for tnfn3.

4. Discussion and conclusion

Correlations have been examined for features for resi-
dues in positions �6 to +6 relative to the residue for which
S2 is to be predicted. The correlations shown in Tables 2
and 3 are dominated by residues in the �1, 0, and +1 posi-
tions. Features for residues in positions further away are
much less correlated with S2.

In the present case, residue size is much less important
than local packing density and secondary structure state.
The importance of local packing density agrees with the
results reported by Zhang and Brüschweiler [26]. Packing
density, parameterized differently, was also found to be
critical in determining crystallographic B-factors [6]. The
relative unimportance of residue size appears to differ from
the results of Goodman and coworkers [10]. However, in
that earlier study, average values of S2 for each amino acid
residue were determined first and then correlated with res-
idue side chain volume. This procedure averages over dif-
ferences in local packing density and secondary structural
state and consequently accentuates the dependence on side
chain volume compared to the present approach.

The Zhang–Brüschweiler formula for predicting S2 is

S2 ¼ tanh 2:656ðexp �rO
�1

�
1 Å

� �
þ 0:8 exp �rH

0

�
1 Å

� �� 	
� 0:1:

ð6Þ

This formula corresponds to the parametrization
expression:

F ¼ s2 W2s1 W1~xð Þ þ~b2

� �
; ð7Þ

and can be thought of as a 2-layer perceptron with two in-
puts expð�rO=1 ÅÞ and expð�rH=1 Å�Þ

� �
. The first layer

has a transfer function is s1ðxÞ ¼ tanhðxÞ, W1 ¼ ½2:656;
2:125�, and no bias. The second layer has a transfer func-
tion s2ðxÞ equal to the identity operation, W2 ¼ 1, and a
bias b2 ¼ �0:1. As can be seen from Fig. 1, a consistent
improvement in prediction is obtained using the neural net-
work model presented herein compared to the Zhang–
Brüschweiler formula. Both the present model and the
Zhang–Brüschweiler formula use distances to carbonyl
oxygen and amide hydrogen atoms as important inputs.
The improvement obtained by the neural network results
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Fig. 6. S2 of tnfn3 domain (a) and its mutants (b and c); (—) experimental measurements; (- - -) neural network predictions. The y-coordinate of each
section ranges from 0 to 1. Residue numbering is based on the longest construct, the RGD loop swap variant. The location of the CC0 and RGD loops is
highlighted in gray. The mutations introduced are shown for each variant protein. Structures of the tnfn3 domains used for predictions are described
elsewhere [41]. The correlation coefficients between experimental and predicted S2 values are (a) 0.512, (b) 0.635, and (c) 0.759.
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in part from the different characteristic lengths used, 3 and
2 Å, for normalizing carbonyl oxygen and amide hydrogen
distances, respectively, and in part from additional features
in the neural network. Neither the change of the character-
istic lengths, nor the addition of any single feature are
responsible for most of the accuracy improvement. As
shown by Figs. 4–6, the neural network tends to overesti-
mate the rigidity of loops. This observation suggests that
other structural features governing protein conformational
dynamics remain to be discovered and parameterized in the
future.

Few studies of the accuracy of experimental measure-
ments of S2 have been reported. Difficulties in controlling
for differences in the models used to fit experimental data
is a confounding factor in attempts to determine absolute
accuracy of experimental values of S2 [21]; consequently,
whether further improvements in prediction accuracy are
limited by the quality of the experimental S2 data or merely
by the size of the feature set that can be stably parameter-
ized is unknown.

The predictions obtained for GB3, HP67, fren ACP,
RNaseH, and the wild-type and mutant fnfn10 and tnfn3
domains suggest that the parameterization of the neural
network is transferable to proteins outside the training
set. Furthermore, the predictions obtained for the loop-
swap mutant fnfn10 and tnfn3 domains suggest that
the neural network provides a useful approach for iden-
tifying mutant proteins with significantly altered confor-
mational dynamics ‘‘in silico” prior to experimental
studies.
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[26] F. Zhang, R. Brüschweiler, Contact model for the prediction of NMR
N–H order parameters in globular proteins, J. Am. Chem. Soc. 124
(2002) 12654–12655.
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[28] D. Ming, R. Brüschweiler, Reorientational contact-weighted elastic
network model for the prediction of protein dynamics: comparison
with NMR relaxation, Biophys. J. 90 (2006) 3382–3388.

[29] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank,
Nucleic Acids Res. 28 (2000) 235–242.

[30] S. Hykin, Neural Networks: A Comprehensive Foundation, Prentice
Hall, Englewood Cliffs, NJ, 1999.

[31] W. Kabsch, C. Sander, How good are predictions of protein
secondary structure? FEBS Lett. 155 (1983) 179–182.

[32] K. Levenberg, A method for the solution of certain non-linear
problems in least squares, Quart. J. Appl. Math. 2 (1944) 164–168.

[33] M.T. Hagan, M. Menhaj, Training feedforward networks with the
Marquardt algorithm, IEEE Trans. Neural Networks 5 (1994) 989–
993.

[34] J.B. Hall, D. Fushman, Variability of the 15N chemical shielding
tensors in the B3 domain of protein G from 15N relaxation
measurements at several fields. implications for backbone order
parameters, J. Am. Chem. Soc. 128 (2006) 7855–7870.

[35] M.J. Grey, Y. Tang, E. Alexov, C.J. McKnight, D.P. Raleigh, A.G.
Palmer, Characterizing a partially folded intermediate of the villin
headpiece domain under non-denaturing conditions: contribution of
his41 to the pH-dependent stability of the N-terminal subdomain, J.
Mol. Biol. 355 (2006) 1078–1094.

[36] Q. Li, C. Khosla, J.D. Puglisi, C.W. Liu, Solution structure and
backbone dynamics of the holo form of the frenolicin acyl carrier
protein, Biochemistry 42 (2003) 4648–4657.

[37] K. Yamasaki, M. Saito, M. Oobatake, S. Kanaya, Characterization
of the internal motions of Escherichia coli ribonuclease HI by a
combination of 15N-NMR relaxation analysis and molecular dynam-
ics simulation: examination of dynamic models, Biochemistry 34
(1995) 6587–6601.

[38] A.M. Mandel, M. Akke, A.G. Palmer, Backbone dynamics of
Escherichia coli ribonuclease H: correlations with structure and
function of an active enzyme, J. Mol. Biol. 246 (1995) 144–163.

[39] A.M. Mandel, M. Akke, A.G. Palmer, Dynamics of ribonuclease H:
temperature dependence of motion on multiple time scales, Biochem-
istry 35 (1996) 16009–16023.

[40] C.D. Kroenke, M. Rance, A.G. Palmer, Variability of the 15N
chemical shift anisotropy in Escherichia coli ribonuclease H in
solution, J. Am. Chem. Soc. 121 (1999) 10119–10125.

[41] K. Siggers, C. Soto, A.G. Palmer, Conformational dynamics in loop
swap mutants of homologous fibronectin type III domains, Biophys.
J. 93 (2007) 2447–2456.

[42] M.J.P. van Dongen, A. Cederberg, P. Carlsson, S. Enerbck, M.
Wikstrm, Solution structure and dynamics of the DNA-binding
domain of the adipocyte-transcription factor FREAC-11, J. Mol.
Biol. 296 (2000) 351–359.


	Protein conformational flexibility prediction using machine learning
	Introduction
	Methods
	Order parameter
	Data banks
	Supervised learning
	Features
	Optimization
	Independent data

	Results
	Statistical analysis and validation
	Sensitivity to structure
	Prediction for additional proteins
	Prediction for fibronectin type III domains

	Discussion and conclusion
	Acknowledgments
	References


